国产睡熟迷奷白丝护士系列精品,中文色字幕网站,免费h网站在线观看的,亚洲开心激情在线

      <sup id="hb9fh"></sup>
          1. 千鋒教育-做有情懷、有良心、有品質(zhì)的職業(yè)教育機(jī)構(gòu)

            手機(jī)站
            千鋒教育

            千鋒學(xué)習(xí)站 | 隨時(shí)隨地免費(fèi)學(xué)

            千鋒教育

            掃一掃進(jìn)入千鋒手機(jī)站

            領(lǐng)取全套視頻
            千鋒教育

            關(guān)注千鋒學(xué)習(xí)站小程序
            隨時(shí)隨地免費(fèi)學(xué)習(xí)課程

            當(dāng)前位置:首頁(yè)  >  技術(shù)干貨  > s3dis詳解:從特點(diǎn)到應(yīng)用

            s3dis詳解:從特點(diǎn)到應(yīng)用

            來(lái)源:千鋒教育
            發(fā)布人:xqq
            時(shí)間: 2023-11-23 17:27:15 1700731635

            一、什么是s3dis

            s3dis,即Stanford Large-Scale 3D Indoor Spaces Dataset,是斯坦福大學(xué)發(fā)布的大規(guī)模室內(nèi)三維空間數(shù)據(jù)集。它包含了6個(gè)建筑物的室內(nèi)三維地圖和物體標(biāo)注數(shù)據(jù),其中每個(gè)建筑物的數(shù)據(jù)集都包含了數(shù)千個(gè)點(diǎn)云和高質(zhì)量的渲染圖像。s3dis提供了豐富的數(shù)據(jù)資源,被廣泛應(yīng)用于室內(nèi)場(chǎng)景分割、多視角圖像生成、室內(nèi)導(dǎo)航等方向的研究領(lǐng)域。

            二、s3dis的數(shù)據(jù)組成

            s3dis的數(shù)據(jù)集包含了6個(gè)建筑物的室內(nèi)空間,共計(jì)超過(guò)270萬(wàn)點(diǎn)的點(diǎn)云數(shù)據(jù),以及高質(zhì)量的渲染圖像和物體標(biāo)注數(shù)據(jù)。其中包括了辦公室、教室、會(huì)議室、走廊、洗手間等常見(jiàn)室內(nèi)場(chǎng)景。在每個(gè)建筑物中,數(shù)據(jù)集以房間為單位進(jìn)行劃分,并標(biāo)注出了房間中的物體類型,如桌子、椅子、地毯等。 下面是s3dis數(shù)據(jù)集的一些統(tǒng)計(jì)信息:

            Building A: 4532 room scans
                        31 object categories
                        9 object instances
             
            Building B: 5063 room scans
                        27 object categories
                        4 object instances
             
            Building C: 5463 room scans
                        27 object categories
                        4 object instances
             
            Building D: 5117 room scans
                        27 object categories
                        4 object instances
             
            Building E: 5292 room scans
                        27 object categories
                        4 object instances
             
            Building F: 5117 room scans
                        27 object categories
                        4 object instances

            除了點(diǎn)云數(shù)據(jù)、渲染圖像和物體標(biāo)注數(shù)據(jù),s3dis還提供了每個(gè)物體在室內(nèi)的3D坐標(biāo)、旋轉(zhuǎn)角度和尺寸信息,這為室內(nèi)場(chǎng)景重建、物體識(shí)別提供了有力支撐。

            三、s3dis的應(yīng)用場(chǎng)景

            由于s3dis數(shù)據(jù)集具有真實(shí)、多樣、明確的標(biāo)注信息,因此在室內(nèi)場(chǎng)景分割、多視角圖像生成、室內(nèi)導(dǎo)航等領(lǐng)域得到了廣泛應(yīng)用。

            四、s3dis的使用示例

            1. 室內(nèi)場(chǎng)景分割

            在室內(nèi)場(chǎng)景分割方面,s3dis數(shù)據(jù)集被廣泛應(yīng)用。下面,我們通過(guò)使用s3dis數(shù)據(jù)集訓(xùn)練模型,實(shí)現(xiàn)一個(gè)室內(nèi)場(chǎng)景分割的樣例。我們使用tensorflow框架和pointnet++網(wǎng)絡(luò)結(jié)構(gòu)來(lái)實(shí)現(xiàn)場(chǎng)景分割。

            import numpy as np
            import tensorflow as tf
            import os
            import sys
            import time
            
            ## 定義pointnet++網(wǎng)絡(luò)結(jié)構(gòu)
            def pointnet2_ssg(inputs, is_training, bn_decay=None):
                # todo: add pointnet++ ssg
                return seg_pred
            
            ## 數(shù)據(jù)讀取
            def load_data(data_dir):
                # todo: load s3dis data
                return data, label
            
            if __name__ == '__main__':
                data_dir = 'data/s3dis'
                model_dir = 'model/s3dis'
                if not os.path.exists(model_dir):
                    os.makedirs(model_dir)
            
                tf.reset_default_graph()
                pointclouds_pl = tf.placeholder(tf.float32, shape=(32, 4096, 6))
                labels_pl = tf.placeholder(tf.int32, shape=(32, 4096))
                is_training_pl = tf.placeholder(tf.bool, shape=())
            
                batch_size = 32
                num_point = 4096
                num_classes = 13
                learning_rate = 0.001
                max_epoch = 250
            
                with tf.device('/gpu:0'):
                    logits = pointnet2_ssg(pointclouds_pl, is_training=is_training_pl, bn_decay=0.7)
                    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels_pl)
                    loss = tf.reduce_mean(loss)
            
                    tf.summary.scalar('loss', loss)
            
                    if bn_decay is not None:
                        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
                        with tf.control_dependencies(update_ops):
                            optimizer = tf.train.AdamOptimizer(learning_rate)
                            train_op = optimizer.minimize(loss)
            
                saver = tf.train.Saver()
            
                ## 數(shù)據(jù)讀取
                data, label = load_data(data_dir)
                num_data = data.shape[0]
            
                ## 開(kāi)始訓(xùn)練
                with tf.Session() as sess:
                    sess.run(tf.global_variables_initializer())
                    file_writer = tf.summary.FileWriter('logs', sess.graph)
            
                    for epoch in range(max_epoch):
                        idx = np.arange(num_data)
                        np.random.shuffle(idx)
                        total_loss = 0
            
                        ## 按批次進(jìn)行訓(xùn)練
                        for from_idx in range(0, num_data, batch_size):
                            to_idx = min(from_idx + batch_size, num_data)
                            batch_data = data[idx[from_idx:to_idx], :, :]
                            batch_label = label[idx[from_idx:to_idx], :]
            
                            ## 訓(xùn)練一個(gè)批次
                            _, batch_loss, batch_logits, summary = sess.run([train_op, loss, logits, merged_summary_op], feed_dict={
                                pointclouds_pl: batch_data,
                                labels_pl: batch_label,
                                is_training_pl: True
                            })
            
                            total_loss += batch_loss
            
                        print('Epoch %d, loss %.4f' % (epoch, total_loss))
            
                        ## 每十個(gè)epoch保存一次模型
                        if epoch % 10 == 0:
                            saver.save(sess, os.path.join(model_dir, 'model.ckpt'), global_step=epoch)
            

            2. 多視角圖像生成

            s3dis數(shù)據(jù)集包含了大量的高質(zhì)量渲染圖像,這為多視角圖像生成提供了有力支撐。下面,我們通過(guò)使用s3dis數(shù)據(jù)集中的渲染圖像,訓(xùn)練一個(gè)GAN網(wǎng)絡(luò)來(lái)生成室內(nèi)場(chǎng)景中的多視角圖像。

            ## 定義GAN網(wǎng)絡(luò)結(jié)構(gòu)
            def generator(inputs, is_training):
                # todo: add generator network
                return gen_output
            
            def discriminator(inputs, is_training):
                # todo: add discriminator network
                return dis_output
            
            ## 數(shù)據(jù)讀取
            def load_data(data_dir):
                # todo: load s3dis data
                return data, label, imgs
            
            if __name__ == '__main__':
                data_dir = 'data/s3dis'
                model_dir = 'model/s3dis'
                if not os.path.exists(model_dir):
                    os.makedirs(model_dir)
            
                tf.reset_default_graph()
                z_ph = tf.placeholder(tf.float32, shape=(32, 100))
                img_ph = tf.placeholder(tf.float32, shape=(32, 224, 224, 3))
                is_training = tf.placeholder(tf.bool, shape=())
            
                ## 定義GAN網(wǎng)絡(luò)
                gen_output = generator(z_ph, is_training=is_training)
                dis_real = discriminator(img_ph, is_training=is_training)
                dis_fake = discriminator(gen_output, is_training=is_training, reuse=True)
            
                ## 定義損失函數(shù)
                d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=dis_real, labels=tf.ones_like(dis_real)))
                d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=dis_fake, labels=tf.zeros_like(dis_fake)))
                d_loss = d_loss_real + d_loss_fake
            
                g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=dis_fake, labels=tf.ones_like(dis_fake)))
            
                tf.summary.scalar("d_loss", d_loss)
                tf.summary.scalar("g_loss", g_loss)
            
                ## 定義優(yōu)化器
                gen_vars = [var for var in tf.trainable_variables() if 'Generator' in var.name]
                dis_vars = [var for var in tf.trainable_variables() if 'Discriminator' in var.name]
            
                gan_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4)
                dis_optimizer = tf.train.AdamOptimizer(learning_rate=2e-4)
                gen_optimizer = tf.train.AdamOptimizer(learning_rate=2e-4)
            
                gan_train = gan_optimizer.minimize(g_loss, var_list=gen_vars, global_step=tf.train.get_global_step())
                dis_train = dis_optimizer.minimize(d_loss, var_list=dis_vars, global_step=tf.train.get_global_step())
                gen_train = gen_optimizer.minimize(g_loss, var_list=gen_vars, global_step=tf.train.get_global_step())
            
                saver = tf.train.Saver()
            
                ## 數(shù)據(jù)讀取
                data, label, imgs = load_data(data_dir)
                num_data = data.shape[0]
            
                ## 開(kāi)始訓(xùn)練
                with tf.Session() as sess:
                    sess.run(tf.global_variables_initializer())
                    file_writer = tf.summary.FileWriter('logs', sess.graph)
                    merged_summary_op = tf.summary.merge_all()
            
                    for epoch in range(max_epoch):
                        idx = np.arange(num_data)
                        np.random.shuffle(idx)
                        total_d_loss, total_g_loss = 0, 0
            
                        ## 按批次進(jìn)行訓(xùn)練
                        for from_idx in range(0, num_data, batch_size):
                            to_idx = min(from_idx + batch_size, num_data)
                            batch_z = np.random.normal(size=[batch_size, 100])
            
                            ## 訓(xùn)練判別器
                            _, batch_d_loss, summary = sess.run([dis_train, d_loss, merged_summary_op], feed_dict={
                                z_ph: batch_z,
                                img_ph: imgs[idx[from_idx:to_idx]],
                                is_training: True
                            })
                            total_d_loss += batch_d_loss
            
                            ## 訓(xùn)練生成器
                            _, batch_g_loss, summary = sess.run([gen_train, g_loss, merged_summary_op], feed_dict={
                                z_ph: batch_z,
                                is_training: True
                            })
                            total_g_loss += batch_g_loss
            
                        print('Epoch %d, d_loss %.4f, g_loss %.4f' % (epoch, total_d_loss, total_g_loss))
            
                        ## 每十個(gè)epoch保存一次模型
                        if epoch % 10 == 0:
                            saver.save(sess, os.path.join(model_dir, 'model.ckpt'), global_step=epoch)
            

            3. 室內(nèi)導(dǎo)航

            利用s3dis數(shù)據(jù)集,我們可以實(shí)現(xiàn)室內(nèi)導(dǎo)航系統(tǒng)。下面,我們通過(guò)使用s3dis數(shù)據(jù)集和強(qiáng)化學(xué)習(xí)算法,訓(xùn)練一個(gè)智能體來(lái)實(shí)現(xiàn)室內(nèi)導(dǎo)航。

            import numpy as np
            import tensorflow as tf
            import os
            import sys
            import time
            
            ## 定義DQN網(wǎng)絡(luò)結(jié)構(gòu)
            def DQN(state_ph, action_ph, is_training):
                # todo: add DQN network
                return Q
            
            ## 數(shù)據(jù)讀取
            def load_data(data_dir):
                # todo: load s3dis data
                return data, label, nav_path
            
            if __name__ == '__main__':
                data_dir = 'data/s3dis'
                model_dir = 'model/s3dis'
                if not os.path.exists(model_dir):
                    os.makedirs(model_dir)
            
                tf.reset_default_graph()
                state_ph = tf.placeholder(tf.float32, shape=(None, 4096, 6))
                action_ph = tf.placeholder(tf.int32, shape=(None,))
                is_training = tf.placeholder(tf.bool, shape=())
            
                ## 定義DQN網(wǎng)絡(luò)
                Q = DQN(state_ph, action_ph, is_training=is_training)
            
                ## 定義損失函數(shù)和優(yōu)化器
                target_ph = tf.placeholder(tf.float32, shape=(None,))
                action_one_hot = tf.one_hot(action_ph, num_action)
                Q_pred = tf.reduce_sum(tf.multiply(Q, action_one_hot), axis=1)
                loss = tf.reduce_mean(tf.square(Q_pred - target_ph))
                optimizer = tf.train.AdamOptimizer(learning_rate=1e-3)
                train_op = optimizer.minimize(loss)
            
                saver = tf.train.Saver()
            
                ## 數(shù)據(jù)讀取
                data, label, nav_path = load_data(data_dir)
                num_data = data.shape[0]
            
                ## 開(kāi)始訓(xùn)練
                with tf.Session() as sess:
                    sess.run(tf.global_variables_initializer())
                    file_writer = tf.summary.FileWriter('logs', sess.graph)
            
                    for epoch in range(max_epoch):
                        idx = np.arange(num_data)
                        np.random.shuffle(idx)
                        total_loss = 0
            
                        ## 按批次進(jìn)行訓(xùn)練
                        for from_idx in range(0, num_data, batch_size):
                            to_idx = min(from_idx + batch_size, num_data)
                            batch_data = data[idx[from_idx:to_idx], :, :]
                            batch_nav_path = nav_path[idx[from_idx:to_idx], :, :]
            
                            ## 訓(xùn)練一個(gè)批次
                            Q_pred_ = sess.run(Q, feed_dict={
                                state_ph: batch_data,
                                is_training: False
                            })
            
                            ## 以一定的概率采取隨機(jī)            
            聲明:本站稿件版權(quán)均屬千鋒教育所有,未經(jīng)許可不得擅自轉(zhuǎn)載。
            10年以上業(yè)內(nèi)強(qiáng)師集結(jié),手把手帶你蛻變精英
            請(qǐng)您保持通訊暢通,專屬學(xué)習(xí)老師24小時(shí)內(nèi)將與您1V1溝通
            免費(fèi)領(lǐng)取
            今日已有369人領(lǐng)取成功
            劉同學(xué) 138****2860 剛剛成功領(lǐng)取
            王同學(xué) 131****2015 剛剛成功領(lǐng)取
            張同學(xué) 133****4652 剛剛成功領(lǐng)取
            李同學(xué) 135****8607 剛剛成功領(lǐng)取
            楊同學(xué) 132****5667 剛剛成功領(lǐng)取
            岳同學(xué) 134****6652 剛剛成功領(lǐng)取
            梁同學(xué) 157****2950 剛剛成功領(lǐng)取
            劉同學(xué) 189****1015 剛剛成功領(lǐng)取
            張同學(xué) 155****4678 剛剛成功領(lǐng)取
            鄒同學(xué) 139****2907 剛剛成功領(lǐng)取
            董同學(xué) 138****2867 剛剛成功領(lǐng)取
            周同學(xué) 136****3602 剛剛成功領(lǐng)取
            相關(guān)推薦HOT