国产睡熟迷奷白丝护士系列精品,中文色字幕网站,免费h网站在线观看的,亚洲开心激情在线

      <sup id="hb9fh"></sup>
          1. 千鋒教育-做有情懷、有良心、有品質(zhì)的職業(yè)教育機(jī)構(gòu)

            手機(jī)站
            千鋒教育

            千鋒學(xué)習(xí)站 | 隨時(shí)隨地免費(fèi)學(xué)

            千鋒教育

            掃一掃進(jìn)入千鋒手機(jī)站

            領(lǐng)取全套視頻
            千鋒教育

            關(guān)注千鋒學(xué)習(xí)站小程序
            隨時(shí)隨地免費(fèi)學(xué)習(xí)課程

            當(dāng)前位置:首頁(yè)  >  技術(shù)干貨  > python查看模塊方法

            python查看模塊方法

            來(lái)源:千鋒教育
            發(fā)布人:xqq
            時(shí)間: 2024-03-11 21:53:53 1710165233

            Python查看模塊方法

            _x000D_

            Python是一種高級(jí)編程語(yǔ)言,具有簡(jiǎn)單易學(xué)、易讀、易維護(hù)等特點(diǎn)。Python中有許多內(nèi)置模塊可以直接使用,同時(shí)也可以通過安裝第三方模塊來(lái)擴(kuò)展Python的功能。在Python中,我們可以使用dir()函數(shù)來(lái)查看模塊中的方法和屬性。本文將介紹如何使用dir()函數(shù)來(lái)查看模塊中的方法,并擴(kuò)展相關(guān)問答。

            _x000D_

            如何查看模塊中的方法?

            _x000D_

            在Python中,我們可以使用dir()函數(shù)來(lái)查看模塊中的方法和屬性。dir()函數(shù)可以接受一個(gè)對(duì)象作為參數(shù),然后返回這個(gè)對(duì)象的所有屬性和方法的名稱列表。例如,我們可以使用以下代碼來(lái)查看Python內(nèi)置模塊math中的所有方法和屬性:

            _x000D_ _x000D_

            import math

            _x000D_

            print(dir(math))

            _x000D_ _x000D_

            運(yùn)行以上代碼,我們可以看到輸出結(jié)果為:

            _x000D_ _x000D_

            ['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'comb', 'copysign', 'cos', 'cosh', 'degrees', 'dist', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'isqrt', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'perm', 'pi', 'pow', 'prod', 'radians', 'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc']

            _x000D_ _x000D_

            從輸出結(jié)果中,我們可以看到math模塊中的所有方法和屬性,其中包括acos、asin、atan、ceil等方法。

            _x000D_

            如何查看模塊中的文檔?

            _x000D_

            在Python中,每個(gè)模塊都有一個(gè)文檔字符串(docstring),用于描述模塊的功能和使用方法。我們可以使用help()函數(shù)來(lái)查看模塊的文檔字符串。例如,我們可以使用以下代碼來(lái)查看Python內(nèi)置模塊math的文檔字符串:

            _x000D_ _x000D_

            import math

            _x000D_

            help(math)

            _x000D_ _x000D_

            運(yùn)行以上代碼,我們可以看到輸出結(jié)果為:

            _x000D_ _x000D_

            Help on module math:

            _x000D_

            NAME

            _x000D_

            math

            _x000D_

            MODULE REFERENCE

            _x000D_

            https://docs.python.org/3.9/library/math

            _x000D_

            DESCRIPTION

            _x000D_

            This module provides access to the mathematical functions

            _x000D_

            defined by the C standard.

            _x000D_

            FUNCTIONS

            _x000D_

            acos(...)

            _x000D_

            acos(x)

            _x000D_

            Return the arc cosine (measured in radians) of x.

            _x000D_

            acosh(...)

            _x000D_

            acosh(x)

            _x000D_

            Return the inverse hyperbolic cosine of x.

            _x000D_

            asin(...)

            _x000D_

            asin(x)

            _x000D_

            Return the arc sine (measured in radians) of x.

            _x000D_

            asinh(...)

            _x000D_

            asinh(x)

            _x000D_

            Return the inverse hyperbolic sine of x.

            _x000D_

            atan(...)

            _x000D_

            atan(x)

            _x000D_

            Return the arc tangent (measured in radians) of x.

            _x000D_

            atan2(...)

            _x000D_

            atan2(y, x)

            _x000D_

            Return the arc tangent (measured in radians) of y/x.

            _x000D_

            Unlike atan(y/x), the signs of both x and y are considered.

            _x000D_

            atanh(...)

            _x000D_

            atanh(x)

            _x000D_

            Return the inverse hyperbolic tangent of x.

            _x000D_

            ceil(...)

            _x000D_

            ceil(x)

            _x000D_

            Return the ceiling of x as a float, the smallest integer value greater than or equal to x.

            _x000D_

            comb(...)

            _x000D_

            comb(N, k, exact=False)

            _x000D_

            Return the number of ways to choose k items from N items without repetition and without order.

            _x000D_

            copysign(...)

            _x000D_

            copysign(x, y)

            _x000D_

            Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros, copysign(1.0,-0.0) returns -1.0.

            _x000D_

            cos(...)

            _x000D_

            cos(x)

            _x000D_

            Return the cosine of x (measured in radians).

            _x000D_

            cosh(...)

            _x000D_

            cosh(x)

            _x000D_

            Return the hyperbolic cosine of x.

            _x000D_

            degrees(...)

            _x000D_

            degrees(x)

            _x000D_

            Convert angle x from radians to degrees.

            _x000D_

            dist(...)

            _x000D_

            dist(p, q)

            _x000D_

            Return the Euclidean distance between two points p and q.

            _x000D_

            e = 2.718281828459045

            _x000D_

            erf(...)

            _x000D_

            erf(x)

            _x000D_

            Error function at x.

            _x000D_

            erfc(...)

            _x000D_

            erfc(x)

            _x000D_

            Complementary error function at x.

            _x000D_

            exp(...)

            _x000D_

            exp(x)

            _x000D_

            Return e raised to the power of x.

            _x000D_

            expm1(...)

            _x000D_

            expm1(x)

            _x000D_

            Return exp(x) - 1. This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.

            _x000D_

            fabs(...)

            _x000D_

            fabs(x)

            _x000D_

            Return the absolute value of the float x.

            _x000D_

            factorial(...)

            _x000D_

            factorial(x, /) method of builtins.int instance

            _x000D_

            factorial(x: int) -> int

            _x000D_

            Find x!. Raise a ValueError if x is negative or non-integral.

            _x000D_

            floor(...)

            _x000D_

            floor(x)

            _x000D_

            Return the floor of x as a float, the largest integer value less than or equal to x.

            _x000D_

            fmod(...)

            _x000D_

            fmod(x, y)

            _x000D_

            Return fmod(x, y), according to platform C. x % y may differ.

            _x000D_

            frexp(...)

            _x000D_

            frexp(x)

            _x000D_

            Return the mantissa and exponent of x as the pair (m, e).

            _x000D_

            m is a float and e is an int, such that x = m * 2.**e

            _x000D_

            If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.

            _x000D_

            fsum(...)

            _x000D_

            fsum(iterable)

            _x000D_

            Return an accurate floating point sum of values in the iterable.

            _x000D_

            Assumes IEEE-754 floating point arithmetic.

            _x000D_

            gamma(...)

            _x000D_

            gamma(x)

            _x000D_

            Gamma function at x.

            _x000D_

            gcd(...)

            _x000D_

            gcd(a, b) -> int

            _x000D_

            greatest common divisor of a and b

            _x000D_

            hypot(...)

            _x000D_

            hypot(x, y)

            _x000D_

            Return the Euclidean distance, sqrt(x*x + y*y).

            _x000D_

            inf = inf

            _x000D_

            isclose(...)

            _x000D_

            isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool

            _x000D_

            Determine whether two floating point numbers are close in value.

            _x000D_

            rel_tol

            _x000D_

            maximum difference for being considered "close", relative to the

            _x000D_

            magnitude of the input values

            _x000D_

            abs_tol

            _x000D_

            maximum difference for being considered "close", regardless of the

            _x000D_

            magnitude of the input values

            _x000D_

            Return True if a is close in value to b, and False otherwise.

            _x000D_

            For the values to be considered "close", the difference between them

            _x000D_

            must be smaller than at least one of the tolerances.

            _x000D_

            -inf, inf and NaN behave similarly to the IEEE 754 Standard. That

            _x000D_

            is, NaN is not close to anything, even itself. inf and -inf are

            _x000D_

            only close to themselves.

            _x000D_

            isfinite(...)

            _x000D_

            isfinite(x) -> bool

            _x000D_

            Return True if x is neither an infinity nor a NaN, and False otherwise.

            _x000D_

            isinf(...)

            _x000D_

            isinf(x) -> bool

            _x000D_

            Return True if x is a positive or negative infinity, and False otherwise.

            _x000D_

            isnan(...)

            _x000D_

            isnan(x) -> bool

            _x000D_

            Return True if x is a NaN (not a number), and False otherwise.

            _x000D_

            isqrt(...)

            _x000D_

            isqrt(n: int) -> int

            _x000D_

            Return the integer square root of the nonnegative integer n.

            _x000D_

            This is the largest integer r such that r*r <= n.

            _x000D_

            >>> isqrt(9)

            _x000D_

            3

            _x000D_

            ldexp(...)

            _x000D_

            ldexp(x, i)

            _x000D_

            Return x * (2**i).

            _x000D_

            This is essentially the inverse of frexp().

            _x000D_

            lgamma(...)

            _x000D_

            lgamma(x)

            _x000D_

            Natural logarithm of the absolute value of the Gamma function at x.

            _x000D_

            log(...)

            _x000D_

            log(x, [base=e])

            _x000D_

            Return the logarithm of x to the given base.

            _x000D_

            If the base not specified, returns the natural logarithm (base e) of x.

            _x000D_

            log10(...)

            _x000D_

            log10(x)

            _x000D_

            Return the base 10 logarithm of x.

            _x000D_

            log1p(...)

            _x000D_

            log1p(x)

            _x000D_

            Return the natural logarithm of 1+x (base e).

            _x000D_

            The result is computed in a way which is accurate for x near zero.

            _x000D_

            log2(...)

            _x000D_

            log2(x)

            _x000D_

            Return the base 2 logarithm of x.

            _x000D_

            modf(...)

            _x000D_

            modf(x)

            _x000D_

            Return the fractional and integer parts of x. Both results carry the sign

            _x000D_

            of x and are floats.

            _x000D_

            nan = nan

            _x000D_

            perm(...)

            _x000D_

            perm(N, k=None, exact=False)

            _x000D_

            Number of ways to choose k items from N items with order and without repetition.

            _x000D_

            If k is not specified or is None, then k defaults to N and we compute the number of permutations of N items: N!/(N-N)! = N!.

            _x000D_

            If k is specified, then we compute the number of ways to select k items from N items with order and without repetition: N!/(N-k)!.

            _x000D_

            If exact is true, the result is returned as an integer, otherwise it is returned as a float.

            _x000D_

            pi = 3.141592653589793

            _x000D_

            pow(...)

            _x000D_

            pow(x, y)

            _x000D_

            Return x**y (x to the power of y).

            _x000D_

            prod(...)

            _x000D_

            prod(iterable, *, start=1)

            _x000D_

            Calculate the product of all the elements in the input iterable.

            _x000D_

            The default start value for the product is 1.

            _x000D_

            When the iterable is empty, return the start value. This function is

            _x000D_

            intended specifically for use with numeric values and may reject

            _x000D_

            non-numeric types.

            _x000D_

            radians(...)

            _x000D_

            radians(x)

            _x000D_

            Convert angle x from degrees to radians.

            _x000D_

            remainder(...)

            _x000D_

            remainder(x, y)

            _x000D_

            Return the IEEE 754-style remainder of x with respect to y. For finite x and finite nonzero y, this is the difference x - n*y, where n is the closest integer to the exact value of the quotient x / y. If x / y is exactly halfway between two consecutive integers, the nearest even integer is used for n. The remainder r = remainder(x, y) thus always satisfies abs(r) <= 0.5 * abs(y).

            _x000D_

            sin(...)

            _x000D_

            sin(x)

            _x000D_

            Return the sine of x (measured in radians).

            _x000D_

            sinh(...)

            _x000D_

            sinh(x)

            _x000D_

            Return the hyperbolic sine of x.

            _x000D_

            sqrt(...)

            _x000D_

            sqrt(x)

            _x000D_

            Return the square root of x.

            _x000D_

            tan(...)

            _x000D_

            tan(x)

            _x000D_

            Return the tangent of x (measured in radians).

            _x000D_

            tanh(...)

            _x000D_

            tanh(x)

            _x000D_

            Return the hyperbolic tangent of x.

            _x000D_

            tau = 6.283185307179586

            _x000D_

            trunc(...)

            _x000D_

            trunc(x:Real) -> Integral

            _x000D_

            Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.

            _x000D_

            DATA

            _x000D_

            e = 2.718281828459045

            _x000D_

            inf = inf

            _x000D_

            nan = nan

            _x000D_

            pi = 3.141592653589793

            _x000D_

            tau = 6.283185307179586

            _x000D_

            FILE

            _x000D_

            (built-in)

            _x000D_

            (END)

            _x000D_ _x000D_

            從輸出結(jié)果中,我們可以看到math模塊的文檔字符串,其中包括模塊的名稱、描述、函數(shù)列表等信息。

            _x000D_

            擴(kuò)展問答

            _x000D_

            1. 如何查看第三方模塊中的方法?

            _x000D_

            答:與查看Python內(nèi)置模塊的方法相同,我們可以使用dir()函數(shù)來(lái)查看第三方模塊中的方法和屬性。例如,我們可以使用以下代碼來(lái)查看第三方模塊numpy中的所有方法和屬性:

            _x000D_ _x000D_

            import numpy as np

            _x000D_

            print(dir(np))

            _x000D_ _x000D_

            2. 如何查看模塊中的指定方法?

            _x000D_

            答:我們可以使用help()函數(shù)來(lái)查看模塊中的指定方法的文檔字符串。例如,我們可以使用以下代碼來(lái)查看Python內(nèi)置模塊math中的acos方法的文檔字符串:

            _x000D_ _x000D_

            import math

            _x000D_

            help(math.acos)

            _x000D_ _x000D_

            3. 如何查看模塊中的屬性?

            _x000D_

            答:我們可以使用dir()函數(shù)來(lái)查看模塊中的屬性。例如,我們可以使用以下代碼來(lái)查看Python內(nèi)置模塊math中的pi屬性:

            _x000D_ _x000D_

            import math

            _x000D_

            print(math.pi)

            _x000D_ _x000D_

            4. 如何查看模塊中的類?

            _x000D_

            答:我們可以使用dir()函數(shù)來(lái)查看模塊中的類。例如,我們可以使用以下代碼來(lái)查看Python內(nèi)置模塊datetime中的datetime類:

            _x000D_ _x000D_

            import datetime

            _x000D_

            print(dir(datetime.datetime))

            _x000D_ _x000D_

            本文介紹了如何使用Python的dir()函數(shù)來(lái)查看模塊中的方法和屬性,以及使用help()函數(shù)來(lái)查看模塊的文檔字符串。還擴(kuò)展了相關(guān)問答,幫助讀者更好地了解Python查看模塊方法的相關(guān)知識(shí)。

            _x000D_
            tags: python教程
            聲明:本站稿件版權(quán)均屬千鋒教育所有,未經(jīng)許可不得擅自轉(zhuǎn)載。
            10年以上業(yè)內(nèi)強(qiáng)師集結(jié),手把手帶你蛻變精英
            請(qǐng)您保持通訊暢通,專屬學(xué)習(xí)老師24小時(shí)內(nèi)將與您1V1溝通
            免費(fèi)領(lǐng)取
            今日已有369人領(lǐng)取成功
            劉同學(xué) 138****2860 剛剛成功領(lǐng)取
            王同學(xué) 131****2015 剛剛成功領(lǐng)取
            張同學(xué) 133****4652 剛剛成功領(lǐng)取
            李同學(xué) 135****8607 剛剛成功領(lǐng)取
            楊同學(xué) 132****5667 剛剛成功領(lǐng)取
            岳同學(xué) 134****6652 剛剛成功領(lǐng)取
            梁同學(xué) 157****2950 剛剛成功領(lǐng)取
            劉同學(xué) 189****1015 剛剛成功領(lǐng)取
            張同學(xué) 155****4678 剛剛成功領(lǐng)取
            鄒同學(xué) 139****2907 剛剛成功領(lǐng)取
            董同學(xué) 138****2867 剛剛成功領(lǐng)取
            周同學(xué) 136****3602 剛剛成功領(lǐng)取
            相關(guān)推薦HOT
            python求平方根函數(shù)

            Python是一種高級(jí)編程語(yǔ)言,具有簡(jiǎn)單易學(xué)、開發(fā)效率高等特點(diǎn),因此廣受歡迎。Python中有一個(gè)非常常用的數(shù)學(xué)函數(shù)——求平方根函數(shù),它可以幫助我...詳情>>

            2024-03-11 23:09:31
            python求協(xié)方差矩陣

            Python求協(xié)方差矩陣_x000D_協(xié)方差矩陣是數(shù)據(jù)分析中非常重要的一個(gè)概念,它可以用來(lái)衡量?jī)蓚€(gè)變量之間的相關(guān)性。在Python中,我們可以使用NumPy庫(kù)...詳情>>

            2024-03-11 22:34:59
            python求函數(shù)極大值

            **Python求函數(shù)極大值**_x000D_在數(shù)學(xué)和計(jì)算機(jī)科學(xué)領(lǐng)域中,求解函數(shù)的極大值是一個(gè)重要的問題。Python作為一種強(qiáng)大的編程語(yǔ)言,提供了許多工具...詳情>>

            2024-03-11 22:22:34
            python方差分析結(jié)果

            Python方差分析結(jié)果分析及擴(kuò)展問答_x000D_方差分析是一種常用的統(tǒng)計(jì)分析方法,它可以用來(lái)比較兩個(gè)或多個(gè)樣本的平均值是否有顯著差異。在Python...詳情>>

            2024-03-11 21:28:47
            python支持函數(shù)重載

            Python支持函數(shù)重載_x000D_Python是一種高級(jí)編程語(yǔ)言,它支持函數(shù)重載。函數(shù)重載是指在同一個(gè)作用域內(nèi),可以定義多個(gè)同名函數(shù),但是這些函數(shù)的...詳情>>

            2024-03-11 21:02:40